AgriLife Research study seeks to pinpoint wheat drought-tolerance mechanisms

VIDEO: Drought Tolerance in Wheat

AMARILLO – Maybe it’s in the shoot, maybe the root. Texas AgriLife Research scientists are on a quest to find where different wheat varieties popular in the High Plains get their drought tolerance.

Dr. Shuyu Liu, Texas AgriLife Research small grains geneticist, looks over wheat grown for a drought-tolerant mechanism study. (Texas AgriLife Research photo by Kay Ledbetter)

Dr. Shuyu Liu, AgriLife Research small grains geneticist in Amarillo, is working with a group of scientists on an Ogallala Aquifer Program-funded project to identify key genetic regulators of drought tolerance.

“We are trying to understand the drought-tolerant mechanisms in wheat varieties,” Liu said. “In this study, we are looking at three widely planted varieties in the High Plains, TAM 111, TAM 112 and TAM 304.

“Based on breeders’ observation, they found that TAM 111 is very good at both irrigated and dryland,” he said. “TAM 112 is much better under prolonged dryland conditions, such as 2011. TAM 304 is very good under irrigated conditions, but not under dryland.”

Dr. Srirama Krishna Reddy, AgriLife Research post-doctorate research associate in Amarillo, works in the lab to conduct gene expression analysis on the different wheat varieties. (Texas AgriLife Research photo by Kay Ledbetter)

Breeders’ observations from the field and the physiological traits collected in the last few years show these three cultivars have different responses to water stress; however, the basis of their adaptation remains unknown, he said.

Determining the mechanisms of adaptation to drought conditions is very important, Liu said, because in 2011 alone, drought stress resulted in the loss of more than 240 million bushels of winter wheat with a cost of about $1.33 billion in the Southern Great Plains.

“We conducted this experiment in the greenhouse to understand how these three varieties respond to water differently and at different stages,” he said. “Currently, we are at the harvesting stage. We have already collected samples from different growth stages for laboratory analysis and now we will collect samples to estimate grain yield and shoot and root biomass on each of these three varieties. In the lab, we will do gene-expression studies to understand what kind of gene is behind each of these varieties controlling their different drought–tolerance mechanisms.”

Pilar Fuentealba, a research assistant for Dr. Shuyu Liu, clips the stems in the individual harvest of the wheat varieties. (Texas AgriLife Research photo by Kay Ledbetter)

Dr. Srirama Krishna Reddy, AgriLife Research post-doctorate research associate in Amarillo, said, “We want to understand what mechanisms exist in the plant – whether in the root system or the shoot system. Several physiological and molecular tools will be used to discover the mechanisms behind the drought adaptation.”

This wheat study was planted in late November and includes the two drought-tolerant varieties and one drought-susceptible variety, Krishna Reddy said.

“We started this study with three different blocks,” he said. “Leaf samples from two other blocks were harvested for gene expression analysis using microarray technology. With this last block, we are going to look at the grain yield and the harvest index under prolonged drought conditions and irrigated conditions.”

Student workers Serina England and Cody Shachter help harvest the individual plants, which includes separating the heads, stems and leaves and putting each of them into bags. Total dry biomass and each component will be calculated to find the differences among three cultivars. (Texas AgriLife Research photo)

Liu said at the same time they have been conducting this greenhouse experiment, all these three varieties have been growing in the field and many data will be collected by the AgriLife Research stress physiology and breeding groups at Amarillo, such as yield and its components and canopy temperature.

“At the end, we will combine the greenhouse data, field data and lab data together to figure out what the difference is for the drought-tolerant mechanism among these three varieties,” he said.

-30-

Kay Ledbetter

Kay Ledbetter is communications coordinator for Texas A&M AgriLife. Additionally, she is responsible for writing news releases and feature articles from science-based information generated by the agency across the state, as well as the associated media relations.

Recent Posts

Texas 4-H wraps current, former military members in Quilts of Valor

Ongoing project through Under Our Wings incorporates sewing skills with military appreciation   Texas 4-H… Read More

April 24, 2024

LEAD AgriLife cohorts set to shape future of organization

Inaugural program includes leaders from across Texas A&M AgriLife A new Texas A&M AgriLife program,… Read More

April 24, 2024

Engineering environmental excellence in the next generation

Jorge Arreola Vargas inspires students with hands-on learning At Texas A&M University, Jorge Arreola Vargas,… Read More

April 24, 2024

An Aggie’s perfect fit, and giving back

Agribusiness graduate Meredith Neely ’02 chairs council committed to supporting the College and students   In… Read More

April 24, 2024

Texas 4-H volunteers assist the next generation

Texas 4-H program director shares the positive impact of volunteers Throughout National Volunteer Month, the… Read More

April 24, 2024

Texas Soil and Water Stewardship Week to be highlighted April 28-May 5

Awareness week focuses on importance of forest and water stewardship in Texas The Texas Soil… Read More

April 24, 2024