Categories: Environment

Drought-stricken trees offer study platform for AgriLife Research scientists

Writer: Kay Ledbetter, 806-677-5608, skledbetter@ag.tamu.edu
Contact: Dr. Sorin Popescu, 979-862-2614, s-popescu@tamu.edu
Dr. Georgianne Moore, 979-845-3765, gwmoore@tamu.edu
Dr. Jason Vogel, 979-845-5580, Jason_vogel@tamu.edu

COLLEGE STATION – Severe drought across Texas since 2011 has produced a unique opportunity for Texas A&M AgriLife Research scientists to gain a greater understanding of the decaying process of trees and the effects on the surrounding ecosystem.

Digital three-dimensional model of forest trees generated by Dr. Sorin Popescu with the terrestrial lidar scanner. The color is associated with elevation above ground. (Figure generated by Dr. Sorin Popescu)

Three AgriLife Research scientists in the Texas A&M University ecosystem science and management department in College Station have been approved for a three-year, $347,426 grant under the Rapid Response and Novel Research in Earth Science program operated by NASA.

Dr. Sorin Popescu will lead the project, titled “Using LiDAR to develop a climate-driven model of the disintegration and decay of trees killed during a severe drought.” He will be joined by Dr. Georgianne Moore and Dr. Jason Vogel.  

Popescu explained that 2011 and 2012 were very difficult years for forests due to drought. During that time period, precipitation for most of Texas was 50-75 percent less than its long-term average.

“This drought’s severity and extent was greater than any other drought that had occurred in the region during the previous 500 years,” he said. “Our forests have suffered tree mortality that was about nine times above normal levels, and the largest trees of the region died at disproportionately high levels.”

Popescu said under the new grant-funded project, the rate of tree disintegration will be monitored through a combination of airborne, unmanned aerial vehicle lidar and terrestrial lidar scanning. Lidar, from Light Detection and Ranging, is a remote-sensing technology that uses laser light to measure the distance from sensor to target and create a three-dimensional model of forest vegetation, in this case.

“Wood decomposition will be tracked using on-site measurements of local climate and tissue decay,and vegetation regrowth estimated with allometric equations,” Moore said.

A site network, already designed by Dr. Chris Edgar of the Texas A&M Forest Service, will facilitate immediate implementation of the research.

“This is critical as the dead trees enter a transitional phase from standing dead to coarse woody-debris,” Vogel said.

Heexplained that tree mortality alters ecosystem processes, but when the mortality is extensive, as is the case for drought, there are significant measurement and modeling difficulties posed to ecosystem scientists.

Two of the difficulties are: passive remote sensing cannot easily differentiate a single dead tree from a living forest or accurately depict a change in a tree’s three-dimensional structure; and the disintegration and decay of standing trees is difficult to model because the elevated tissues cannot be directly sampled and wood decay may occur at different rates than tissues found on the ground.

Popescu said the technology and modeling structure to overcome these difficulties has been developed.

“Because the newly dead trees in Texas are quickly transitioning to fallen wood, we need to immediately apply these techniques to this extensive, catastrophic event,” he said. “By implementing the study immediately, we will be able to leverage an existing study design and take advantage of the large number of dead trees on the landscape.”

The scientists expect their research to have a long‐lasting impact because it will provide the foundation for understanding how these kinds of events alter future forest structure and function.

Also, they said, the remote sensing of tree disintegration and decay will be novel and linked to potential changes in climate, making the results potentially transferable to other forest ecosystems.

 

-30-

 

Kay Ledbetter

Kay Ledbetter is communications coordinator for Texas A&M AgriLife. Additionally, she is responsible for writing news releases and feature articles from science-based information generated by the agency across the state, as well as the associated media relations.

Recent Posts

Texas 4-H wraps current, former military members in Quilts of Valor

Ongoing project through Under Our Wings incorporates sewing skills with military appreciation   Texas 4-H… Read More

April 24, 2024

LEAD AgriLife cohorts set to shape future of organization

Inaugural program includes leaders from across Texas A&M AgriLife A new Texas A&M AgriLife program,… Read More

April 24, 2024

Engineering environmental excellence in the next generation

Jorge Arreola Vargas inspires students with hands-on learning At Texas A&M University, Jorge Arreola Vargas,… Read More

April 24, 2024

An Aggie’s perfect fit, and giving back

Agribusiness graduate Meredith Neely ’02 chairs council committed to supporting the College and students   In… Read More

April 24, 2024

Texas 4-H volunteers assist the next generation

Texas 4-H program director shares the positive impact of volunteers Throughout National Volunteer Month, the… Read More

April 24, 2024

Texas Soil and Water Stewardship Week to be highlighted April 28-May 5

Awareness week focuses on importance of forest and water stewardship in Texas The Texas Soil… Read More

April 24, 2024